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Wave breaking due to internal wave–shear flow
resonance over a sloping bottom
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A new mechanism of internal wave breaking in the subsurface ocean layer is consid-
ered. The breaking is due to the ‘resonant’ interaction of shoaling long internal gravity
waves with the subsurface shear current occurring in a resonance zone. Provided the
wind-induced shear current is oriented onshore, there exists a wide resonance zone,
where internal wave celerity is close to the current velocity at the water surface and
a particularly strong resonant interaction of shoaling internal waves with the current
takes place. A model to describe the coupled dynamics of the current perturbations
treated as ‘vorticity waves’ and internal waves propagating over a sloping bottom is
derived by asymptotic methods. The model generalizes the earlier one by Voronovich,
Pelinovsky & Shrira (1998) by taking into account the mild bottom slope typical of
the oceanic shelf. The focus of the work is upon the effects on wave evolution due
to the presence of the bottom slope. If the bottom is flat, the model admits a set of
stationary solutions, both periodic and of solitary wave type, their amplitude being
limited from above. The limiting waves are sharp crested. Space–time evolution of the
waves propagating over a sloping bottom is studied both by the adiabatic Whitham
method for comparatively mild slopes and numerically for an arbitrary one. The
principal result is that all onshore propagating waves, however small their initial
amplitudes are, inevitably reach the limiting amplitude within the resonance zone
and break. From the mathematical viewpoint the unique peculiarity of the problem
lies in the fact that the wave evolution remains weakly nonlinear up to breaking. To
address the situations when the subsurface current becomes strongly turbulent due
to particularly intense wind-wave breaking, the effect of turbulent viscosity on the
wave evolution is also investigated. The damping due to the turbulence results in a
threshold in the initial amplitudes of perturbations: the ‘subcritical’ perturbations are
damped, the ‘supercritical’ ones inevitably break. As the breaking events occur mainly
in the subsurface layer, they may contribute significantly to the mixing and exchange
processes at the air/sea interface and in creating significant surface signatures.

1. Introduction
Establishing and understanding the basic mechanisms of mixing in the subsurface

layer of lakes and oceans is of interest from many viewpoints. Most physically and
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environmentally important processes, such as energy, gas and heat exchange with
the atmosphere, pollutants distribution, phytoplankton life cycles and many others,
depend on and often are even directly controlled by the intensity of mixing in the
subsurface layer. It is of little wonder that a huge amount of effort has been put
into the experimental and theoretical studies of the basic mechanisms determining the
intensity and properties of the mixing processes, resulting in a comparatively good, but
still insufficient understanding. Direct wind stress, drift currents and their instabilities,
tidal currents, both primary and residual (especially important in estuaries and coastal
zones), and surface gravity waves breaking are considered to be the most important
physical factors contributing to the mixing enhancement.

Yet even the long list above seems to be incomplete. For example, a direct input
from internal waves into the mixing processes in the subsurface layer has never
been considered to be of importance. Their effect on the sea surface is usually
neglected unless the waves are strongly nonlinear or their surface signatures, i.e.
wave-induced inhomogeneities of some directly observable factors, such as albedo,
sea ice and surface pollutant distribution, surface wave breaking intensity etc., are
of interest for their own sake. The reason for this neglect is that the fluid motion
induced by the internal wave is usually localized within the thermoclyne well below
the surface, and its intensity decreases rapidly upward. However for a particular
class of situations the effect of even initially small-amplitude internal waves results
in a strongly nonlinear wave motion and breaking events in the subsurface layer.
A mechanism for this phenomenon to occur is the direct resonance of the internal
waves with the subsurface shear flow. The linear and nonlinear theory of the direct
resonance over flat bottom have been developed by Voronovich & Shrira (1996) and
Voronovich, Pelinovsky & Shrira (1998, hereinafter referred to as VPS).

The physics underlying this mechanism and the mathematical model to describe it
are based on the concept of ‘vorticity waves’ introduced by Shrira (1989). Suppose that
there exists a shear current of boundary-layer type with the velocity monotonically
decreasing with the depth, localized in a thin subsurface layer of width h. Within the
framework of the inviscid theory, linear perturbations of such a current are composed
of singular modes usually referred to as Case waves (Dickey 1960; Case 1960). The
remarkable fact which allows one to describe arbitrary flow perturbations within
the framework of the wave formalism is that, provided the horizontal scale of the
perturbation is much larger than h, an aggregate of the singular Case modes behaves
on a certain timescale as if it were a single mode of the discrete spectrum having
no singularities in the leading order. These quasi-discrete modes are called ‘vorticity
waves’ as they owe their existence to the inhomogeneous vorticity field provided by
the current. They are weakly dispersive, have celerities close to the flow speed at the
surface, are very weakly influenced by the stratified fluid below the current’s body
and can be successfully described within the framework of wave formalism (see e.g.
Voronovich, Shrira & Stepanyants 1998).

On the contrary, internal waves are due to the buoyancy forces acting in stratified
fluid and in the main order are almost unaffected by the current, provided both their
wavelength L and the fluid depth H are large compared to h. Thus, in typical oceanic
conditions two physically different types of wave motions may coexist in stratified
shear currents, vorticity and internal ones, their influence on each other being generally
negligible. However, if the phase speed of a certain internal wave mode is close to
that of the vorticity wave mode, a resonance of internal wave and shear flow occurs
and a particularly strong interaction takes place. A linear theory of this phenomenon
was first proposed by Reutov (1990), who, by employing an asymptotic expansion in
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powers of ε = h/L, found that the process results in splitting of the mode dispersion
curves and O(ε1/2) corrections to the wave celerity, instability being present if, and only
if, there exist inflection points in the current profile. These results were corroborated
by Voronovich & Shrira (1996) who established the interaction to be of the direct
resonance type, i.e. the vertical structures of the interacting modes have to be close
to each other (Akylas & Benney 1980). They also found that the process leads to
a significant amplification of the wave motion near the surface: at the resonance
conditions the perturbation of the horizontal velocity at the surface proved to be an
order of magnitude larger than at the depth, providing an effective mechanism for
internal wave surface manifestations.

The next natural step was to develop a nonlinear model. Direct resonances are
qualitatively different from, for example, those between internal waves originating
from two different thermoclynes. In the latter case only the phase speeds of the
modes match, while their vertical structure remains different and a traditional KdV
type theory can be applied even at the resonant conditions (see e.g. Gear & Grimshaw
1984). This not being the case for direct resonance, a new theory was required
and eventually developed for shallow water with a flat bottom by VPS. The mode
amplitudes a and b of the internal and vorticity mode respectively were found to be
governed by the system of coupled evolution equations

at + ∆ax − axxx − bx = 0, (1.1a)

bt + 2bbx − ax = 0, (1.1b)

where the only parameter ∆ is the mismatch in the phase speeds of the interacting
waves. The mismatch ∆ depends primarily on the water depth and the stratification.
A peculiar feature of the interaction is that the internal wave’s own nonlinearity
does not appear in (1.1), the nonlinear behaviour of the wave being entirely due to
the interaction with the vorticity wave. Thus, the resonant mechanism allows even
internal waves of comparatively small amplitude to create essentially nonlinear wave
patterns in the boundary layer.

From a general viewpoint the system (1.1) is a particular degenerate case of
coupled KdV equations. Although the wave dynamics within the framework of the
generic coupled KdV system is well known (Grimshaw 2000), this does not help in
understanding the particular degenerate case we are interested in. The system (1.1)
possesses a rich family of plane steady wave solutions, including solitary waves of
two types, moving slightly faster and slower than the linear waves, the amplitude
of the ‘fast’ ones limited from above. The limiting wave is characterized by a sharp
corner on the crest. This kind of limiting solution is usually referred to as peaked
solitons and is very similar to those found in modelling wave breaking within the
framework of Whitham’s equation (Fornberg & Whitham 1978; Camassa & Holm
1993). Numerical simulations of the initial problem within the framework of (1.1)
showed that the solitary waves are ‘attractors’ for the ‘subcritical’ localized initial
pulses, i.e. with the amplitudes below a certain threshold, while ‘supercritical’ ones
develop vertical slopes at the front in finite time which indicates wave breaking.

One of the major factors greatly influencing and sometimes even controlling the
evolution of internal waves on a shelf, the depth variations, was not addressed by
VPS for the sake of simplicity. Here we study the evolution of shoaling waves over a
sloping bottom in the resonance zone. Since the resonant interaction we are studying
occurs when the mismatch between the current at the surface and the phase velocity
of an internal gravity wave is small (of order of the nonlinearity parameter) and the
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celerities of long internal waves vary with the total depth H as H1/2, this implies
that the depth variation over the resonance zone is necessarily small to ensure the
appropriate balance. A rough idea of the possible effect of the depth variations on the
waves under consideration can be obtained by comparing stationary wave solutions
of (1.1) obtained for different values of constant ∆, which correspond to different fluid
depths. The shape of, say, solitary waves depends only on the wave celerity v and
the mismatch ∆ (see e.g. VPS, figure 4) and varies from very smooth to the limiting
peaked solitons. Since ∆ changes with the depth, one can expect that, if the wave
celerity is fixed in the course of evolution, then any wave should reach the limiting
shape as the depth decreases. The reality is more complicated, since, even when the
depth variations are adiabatically slow, the celerity does not remain constant, but,
nevertheless, this naive argument proves to be robust. In the present work we show
that both periodic and solitary shoaling waves inevitably reach their limiting form
in finite time. Any further slow evolution is impossible and wave breaking occurs.
Direct numerical simulation carried out for arbitrary bottom slope corroborates the
analytical results obtained in the adiabatic approximation. Of course, our model does
not describe the breaking itself: the equations cease to be applicable in the immediate
vicinity of the breaking point.

It is helpful to put the phenomenon we focus on into more general nonlinear wave
theory perspective. The internal wave–shear current resonance over a sloping bottom
can be viewed as a new example of nonlinear wave transition through a resonant
point in an inhomogeneous medium (see e.g. Friedland 1998 and the references cited
therein, where different types of such resonances are considered). From this viewpoint
this is a common situation, although the equations are new: the wave of one type
approaching the resonance point generates or enhances the wave of another type,
which for our case means enhancement of the vorticity wave by the internal one.
Again, the ways of studying wave nonlinear evolution in a gently inhomogeneous
medium up to the point of disintegration are well established and to apply them
to a new particular set of equations is relatively straightforward (see e.g. Whitham
1974; Pelinovsky 1996; Agnon, Pelinovsky & Sheremet 1998). The unique peculiarity
of the problem under consideration lies in the fact that while wave breaking is
usually a strongly nonlinear phenomenon, in our case wave evolution up to breaking
is adequately described by weakly nonlinear equations tractable analytically.

We start § 2 with the derivation of the set of equations governing internal wave–
shear flow resonance over a sloping bottom assuming the wave to be long in compar-
ison with the typical total water depth (see figure 1). In the most general formulation
the no-flux boundary condition is now formulated at an uneven boundary z = −H(r)
and separation of variables is impossible even as an approximation, making the prob-
lem untractable by analytical means. However, assuming the depth deviation from the
mean value in the domain of interest to be small, one can take into account its effect
as a perturbation and preserve the asymptotic scheme developed by VPS. Having
performed the necessary algebra we arrive at a set of equations similar to (1.1) with
only one difference: now the phase mismatch ∆ depends on time. In § 3 we study
periodic stationary waves occurring within the framework of the original system (1.1)
with constant ∆. A complete analysis of even a simplified system with time-dependent
phase mismatch is hardly possible at present, though important analytical results can
be obtained, if the spatial scale of depth variations is much larger than a typical
wavelength. Under this assumption in § 4 we study the adiabatic evolution of the soli-
tary wave solutions of (1.1) with slowly varying ∆, i.e. assume that in each moment
Ti the solution is close to the solitary wave of (1.1) with a phase mismatch ∆ = ∆(Ti).



Wave breaking due to internal wave–shear flow resonance 191

Resonance zone

2
1 4

3

5 6

Figure 1. Geometry and notation: 1 – unperturbed flow velocity profile U(z); 2 – vorticity mode
outside the resonance zone; 3 – Brunt-Väsälä frequency N(z); 4 – internal wave mode outside the
resonance zone; 5, 6 – coupled modes. In the right lower corner an expanded view of the region
marked by the dashed line is shown.

Such an approach is common for studies of surface and internal wave transformation
on a shelf, most often within the framework of KdV or Boussinesq equations with
variable coefficients (Grimshaw 1970, 1979; Pelinovsky 1996; Ostrovsky & Pelinovsky
1975; Peregrine & Thomas 1979). The parameters of the solitary wave are supposed
to be slowly varying with time and a set of equations governing their evolution
on a slower scale is derived. In our study we use Whitham’s averaged Lagrangian
method (Whitham 1974). The principal conclusion is that all shoaling ‘fast’ solitary
waves inevitably become locally close to the limiting one, i.e. form a singularity at
the crest. The solution cannot be continued adiabatically beyond this point and one
has the grounds to expect wave breaking to occur. In § 5 we study the evolution of
periodic shoaling waves without making any explicit assumptions on the smallness
of the bottom slope. A numerical scheme based on the pseudo-spectral methods is
applied to trace the evolution of the initial wavelike perturbations. The computations
indicate that waves of whatever small initial amplitude do break within the resonance
zone. This conclusion is somewhat modified in § 6, where we take into account wave
damping to address the situations when the subsurface current becomes strongly
turbulent due to particularly intense wind-wave breaking. Then there is a threshold
in the initial amplitudes of perturbations: the perturbations below this threshold are
dampted, those above inevitably break. The results and some possible implications
are briefly discussed in the concluding § 7.

2. Problem statement and asymptotic analysis
As most field observations testify, internal waves in shallow water usually propagate

normally to the coastline and are quasi-planar. That is why, as well as for the sake
of clarity and simplicity, we hereinafter confine ourselves to the study of planar
waves propagating normally to the shore and neglect any variability in the spanwise
direction. The starting point is then the standard set of equations (see e.g. LeBlonde
& Mysak 1979)

ut + (u · ∇)u+
px

ρ0

= 0, (2.1a)

µ [wt + (u · ∇)w] +
pz

ρ0

− b = 0, (2.1b)
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bt + wN2 + (u · ∇)b = 0, (2.1c)

∇ · u = 0, (2.1d)

where p, b are the pressure and buoyancy perturbations, ρ0(z) is an equilibrium
density distribution and the fluid horizontal velocity u contains both the mean flow
and perturbations:

u = U (z) + û(x, z, t).

Equations (2.1) have been made non-dimensional by using a scaling transformation

z′ = H0 z, x′ = Lx, t′ =
H0

V
t,

u′ = V u, w′ = V
H0

L
w, N ′ =

V

H0

N,

p′

ρ′0
= V 2 p

ρ0

, b′ =
V 2

H0

b,


(2.2)

based upon a typical fluid depth H0, the wavelength L and the basic flow velocity

V , with µ =
(
H0/L

)2
being a small parameter corresponding to the weak KdV-type

dispersion of internal waves. The boundary conditions are the standard ‘rigid lid’ at
the surface and ‘no-flux’ at a sloping bottom

w
∣∣
z=0

= 0, (2.3a)

uHx + w = 0 at z = −H(x). (2.3b)

The fluid, thus, is assumed to be composed of two layers: the still core and the
subsurface boundary layer containing the shear flow with an effectively different scale
of vertical motion. The natural way of treating the problem is to use the smallness
of the two parameters describing the wave–flow system, namely µ and ε = h/H0, and
to employ the method of matched asymptotic expansions. With that end in view, we
first have to find a solution to (2.1) in the core, subject to the no-flux condition (2.3b),
then to introduce an inner vertical variable in the boundary layer

ζ =
z

ε
(2.4)

and to find an inner solution subject to the ‘rigid lid’ condition (2.3a), and, finally, to
match both solutions at ζ → −∞, z → 0.

In a standard manner we introduce a set of space–time variables

χ = x− ct, τ = µt, (2.5)

corresponding to a perturbation advancing with the celerity c of a resonant long
internal wave, with its amplitude evolving on a slower timescale. The analysis of VPS
indicates that the dispersive and resonant effects have the same order of magnitude
if the balance

ε =
h

H0

= µ2 (2.6)

holds. The magnitudes of the motion in the bulk of the fluid and in the boundary
layer being quite different, a separate amplitude scaling is required for these two
layers.
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2.1. The core solution

In the core the mean flow is absent and we look for solutions of (2.1), (2.3b) in the
form of power series of a single small parameter

{u, w, b, p} = µ2

∞∑
n=0

µn{un, wn, bn, pn}. (2.7)

Under condition (2.3b) vertical and horizontal variables do not separate and the
system is untreatable, unless some additional assumptions on the depth variability
are employed. We assume, first, the horizontal scale of the bottom variations to be
much larger than the typical wavelength. This implies that the magnitude of bottom
variations within the ‘resonance zone’ is comparatively small, namely

H(x) = 1 + µ d(ν x), (2.8)

where ν � 1 is an additional small parameter which, in principle, may be either
smaller or larger than µ. Then the boundary condition (2.3b) can be expanded in
the Taylor series near the point z = −1 and, taking into account the results of the
preceeding section, the main-order core solution is just an undisturbed internal wave
over the flat bottom:

w0 = −cAχf, u0 = cAfz, (2.9)

where A = A(χ, τ) is the depth-independent amplitude of an internal wave, while
f = f(z) is the modal function satisfying the boundary-value problem

fzz +

(
N

c

)2

f = 0, (2.10a)

f(0) = f(−1) = 0. (2.10b)

The effect of the resonance with the shear flow and the depth inhomogeneity
manifests at the next order, as the boundary condition at the bottom is no longer
of the rigid lid type. Due to the bottom inhomogeneity the boundary condition at
z = −1 now reads

w1

∣∣
z=−1

=
∂w0

∂z
d, (2.11a)

while the presence of the shear flow perturbation changes the boundary condition at
z = 0. The simplest way to take this effect into account is to require the pressure and
streamline displacement to be continuous through the boundary between the flow
and the still fluid below, which results in the constraint for vertical velocity

w1

∣∣
z=0

= −cBχ, (2.11b)

with B = B(χ, τ) being the amplitude of the vorticity mode in the shear flow layer.
Performing the necessary calculations, finally we find an inhomogeneous boundary

problem for w1, its solution being regular only if a certain compatibility condition is
met. Finding this and taking into account (2.11), we obtain an evolution equation for
the internal wave amplitude:

αAτ + δAχ + βAχχχ − f(0)
z Bχ = 0, (2.12)

with the superscripts (0), (−1) denoting the values of the variable at z = 0, z = −1
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and the coefficients given by the expressions

α =
2

c

∫ 0

−1

(
N

c

)2

f2dz, β =

∫ 0

−1

f2dz, δ =
(
f(−1)
z

)2
d(νx). (2.13)

Under the scaling adopted the internal wave’s own nonlinearity does not enter (2.12),
but due to the coupling with the vorticity wave the former is affected by the nonlinear
behaviour of the latter. To close the system of the amplitude equations we have to
find the solution in the boundary layer, where the vorticity wave is located, and then
to match it with the core solution.

2.2. The boundary-layer solution

The vertical scale of motion in the boundary layer is different from that in the core,
which means that the relative magnitude of the wave field components specified by
(2.7) is no longer valid. However pressure and ‘fluid line’ displacement, and thus
vertical velocity, should be continuous through the boundaries of any fluid layers and
this constraint specifies the scaling

{u, w, p} = µ2

∞∑
n=0

µn{µ−1un, µwn, pn}, (2.14)

while the buoyancy perturbation as well as the Brunt–Väsälä frequency variation may
be neglected. The boundary conditions are rigid lid at the surface ζ = 0 and matching
with the core solution at the outer boundary ζ → −∞, namely

u→ µ2cA+ O(µ3), (2.15a)

w → −µ3cBχ + O(µ4), (2.15b)

p→ µ2c2A+ O(µ3). (2.15c)

Solving (2.1) and applying the boundary conditions (2.3a), (2.15) we find the structure
of the vorticity wave in the main order:

w0 = (U − c)Bχ, u0 = −UζB, (2.16)

and an evolution equation for the vorticity wave amplitude in the next one:

Bτ −Uζ

∣∣∣
ζ=0
BBχ − U2

Uζ

∣∣∣∣
ζ=0

f(0)
z Aχ = 0. (2.17)

This together with (2.12) forms a closed system of coupled evolution equations
governing the dynamics of the internal wave and the shear current perturbations at
resonant conditions. Unlike the internal gravity mode the vorticity one is governed
by the nonlinear equation (2.17) and so essentially nonlinear wave patterns may
result during interaction. According to the scaling used in the bulk of the fluid
the disturbance represents mainly the internal wave, whereas in the boundary layer
the vorticity mode prevails. This is the principal feature of the phenomenon under
consideration and is why the resonant interaction cannot be properly described within
the framework of the usual uncoupled models of internal wave evolution. The internal
mode itself is indeed weakly influenced by such a ‘thin’ shear current, i.e. its celerity
and mode structure are just slightly disturbed (by an O(µ) amount). The major effect
of the resonance is the excitation of a flow perturbation which is here treated as the
vorticity wave and which is much stronger than the initial disturbance.
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By means of a scaling transformation

∆ =

 U ′

α
(
Uf

(0)
z

)2


1/2

δ, b =

(
αU ′3

)1/2

2Uf(0)
z

B, a =
αU ′

2f(0)
z

A,

t =

((
Uf(0)

z

)6

αβ2U ′3

)1/4

τ, x =

(
α
(
Uf(0)

z

)2

β2U ′

)1/4

χ,


(2.18)

where all values of the flow velocity and its derivative are taken at the fluid surface,
(2.12), (2.17) can be reduced to the non-dimensional form (1.1). It is clear now, that
the phase mismatch ∆ is directly proportional to the depth variation d(νx). It is useful
to transform it to the moving coordinate frame by observing that

∆(νx) = ∆(νχ+ νµ−1cτ) ' ∆̃(νµ−1τ).

The latter approximate equality means that the major effect of the bottom variations
is due to the integral change of the depth and not due to variation of the bottom
slope.

3. Stationary waves
Clearly, a set of equations with time-dependent coefficients like (1.1) cannot possess

any stationary solutions. Yet, if one is interested in the wave dynamics in the system
with slowly varying coefficients, these may be of considerable help as was discussed
in § 1. So in this section let us assume the bottom to be flat and, hence, ∆ to be
constant. Under this approximation (1.1) does possess stationary solutions of both
periodic and solitary wave type. The latter were studied extensively by VPS, so the
primary concern here will be the periodic ones.

Let us look for stationary solutions of (1.1) describing a general wavelike pertur-
bation advancing without change of form with a constant speed:

a = as(x− vt), b = bs(x− vt). (3.1)

Substituting (3.1) into (1.1) and integrating once with respect to the running variable
Θ = x− vt results in a set of two ordinary differential equations:

d2a

dΘ2
+ (∆− v)a+ R = b, (3.2a)

b2 − vb+ P = a, (3.2b)

where R and P are constants of integration. They implicitly determine important
physical parameters of the periodic wave such as the period, the amplitude and the
mean value over the period, subscripts being omitted for brevity. Excluding a(Θ) from
(3.2a) and integrating it once again we get an equation corresponding to the energy
equation for a particle in a potential well, Θ being the time and b the coordinate of
the particle:(

db

dΘ

)2

=
1

(v − 2b)2
((v − ∆)

(
b2 − vb− P )2 − R (b2 − vb+ P

)
+ 4

3
b3 − vb2 − 2Q),

(3.3)
where Q is an additional constant of integration. For solitary waves having zero
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Figure 2. Periodic stationary wave solutions of (3.6) (∆ = 1.0, v = 1.2).

asymptotics at infinity, all constants of integration are zero and (3.3) coincides exactly
with (4.4b) of VPS. A straightforward analysis (see VPS for details) indicates that the
original set (1.1) possesses two families of solitary waves with speeds in the ranges

v ∈ (c−; min{∆, 0}) and v ∈ (c+; v+), (3.4a)

where the borders of the regions of existence are given by

c± = 1
2

[
∆± (4 + ∆2

)1/2
]
, v+ = 1

2

[
∆+

(
16
3

+ ∆2
)1/2
]
. (3.4b)

Waves advancing with the maximal speed v+ have a singularity, a sharp corner at the
crest, and are close to those found by Fornberg & Whitham (1978) in their studies of
breaking of surface gravity waves.

Focusing on the studies of periodic waves it is convenient, first, to change the
evolutional variable and to rewrite (3.3) in terms of the wave phase θ = kΘ by
implicitly introducing the wavevector k. Second, for the sake of maximal clarity and
simplicity of the final results we confine ourselves to the study of periodic stationary
waves having zero mean over the period

{〈a〉, 〈b〉} =
1

2π

∫ π

−π
{a, b} dθ = 0, (3.5)

as constant pedestals can be removed by means of a simple transformation of b, v
and ∆. Then averaging (3.2a) over the period we find R = 0 and, hence, for waves
with zero mean, (3.3) takes the much more simple form

k2(b′)2 =
1

(v − 2b)2

(
(v − ∆)(b2 − vb− P )2 + 4

3
b3 − vb2 − 2Q

)
. (3.6)

Provided all roots of the nonlinear potential (the expression on the right-hand side of
(3.6)) are real and known, the solution for the periodic wave can be found in closed
form in terms of incomplete elliptic integrals of the first and the third kind. Yet that
is not of much practical use for analytic calculations as the roots of the fourth-order
polynomial can, in general, be found only with the help of numerical methods. To
give an idea of how the steady periodic wave solutions look several examples of
such solutions of the form ranging from quasi-linear to the limiting one constructed
numerically are depicted in figure 2.

Nonetheless, one is able to proceed with analytical methods if any two of the four
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roots of the nonlinear potential are close to each other. One of these cases corresponds
to solitary wave solutions and was thoroughly studied by VPS, another corresponds
to small-amplitude periodic waves asymptotically close to linear ones, while in the
third case the solution is close to the limiting periodic wave.

3.1. Small-amplitude waves

In this subsection, we are interested in small-amplitude waves, close to the harmonic
solutions of (3.6) and having zero mean over the period. This implies, first, that the
motion of the imaginary particle occurs in the immediate vicinity of the point b = 0
and, second, that the values of the constants are of order of the wave amplitude
squared. Therefore we expand the right-hand side of (3.6) into Taylor series in b and
introduce a new constant

q = Q− 1
4
(v − ∆)

(
v2P + 2P 2

)
, (3.7)

This procedure results in the simplified equation for small-amplitude waves

k2
(
b′
)2

= 1
2
(v − ∆)P − 2

q

v2
− 8

q

v3
u− β2b2 − α2b3, (3.8a)

with the coefficients being positive and given in explicit form by the expressions

β2 =
1 + v∆− v2

v
, α2 = 2

4
3

+ v∆− v2

v2
. (3.8b)

Note that the terms of order higher than u3 are omitted as well as small (an order
of q) corrections to α2, β2, as our primary interest at this stage is in linear waves and
the first nonlinear corrections to them.

The solution to (3.8) is sought in the form of an non-harmonic wave of small
amplitude (ε� 1) having zero mean over a period:

b = ε b1 cos(θ) + ε2b2 cos 2θ + · · · . (3.9)

On substituting (3.9) into (3.8) and equating main-order coefficients occurring in zero
to third harmonics, we find the dispersion relation for linear waves in the implicit
from

k2 =
1 + v∆− v2

v
, (3.10)

and the constants P , q (and, hence, Q) and the amplitude of the second harmonic,
which are related to the first-harmonic amplitude by the expressions

P = − ε2 b
2
1

2
, (3.11a)

q = ε2
3v

8

(
v2 + v∆− 4

3

)
b2

1 ⇒ Q = ε2
v

2

(
v2 − v∆− 1

)
b2

1, (3.11b)

b2 =
1

2v

v2 − v∆− 4
3

v2 − v∆− 1
b2

1. (3.11c)

It is easy to show that the dispersion relation (3.10) coinsides exactly with (4.2) of
VPS found by direct linearization of (1.1) and therefore the regions of linear wave
existence in Fourier space are determined by

v ∈ (−∞; c−) and v ∈ (0; c+) , (3.12)

the borders given by (3.4b).
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3.2. Limiting waves

Another important solution which can be obtained by analytical means is the limiting
wave. Like their solitary counterparts the limiting periodic waves exist only in the
‘fast’ wave family, i.e. moving faster than the linear one (v > ∆). As shown below, if
two larger roots of (3.6) coincide, this always occurs at the value b+ = v/2 at which
the singularity in the potential takes place. This singularity of the double-pole type
is the reason for limiting wave appearance. It results from the simple fact that the
fluid particles in the wave cannot move faster than the wave itself (the multiplyer
1/2 is due to a specific form of non-dimensionalization employed in (1.1)). To obtain
a better insight into the problem, first note that the roots of (3.6) coincide with the
roots of its numerator

S = (v − ∆)
(
b2 − vb+ P

)2
+ 4

3
b3 − vb2 − 2Q (3.13)

and therefore its double roots occur at the points which are simultaneously zeros of
its first derivative

S′ = −2(v − ∆)(v − 2b)

(
b2 − v2 − v∆− 1

v − ∆ b+ P

)
. (3.14)

From (3.14) it is clear that one of the extrema, which we are interested in, does occur
at b = v/2, the point of the singularity in the potential. The condition of this point
to be simultaneously a zero of (3.13) imposes a constraint on the possible values of
wave parameters, i.e. for a limiting wave an equality

Q = 1
2
(v − ∆)P 2 − v2

4
(v − ∆)P +

v3

32

(
v2 − v∆− 4

3

)
(3.15)

must hold. In the case of solitary waves, i.e. at P = Q = 0, (3.15) yields the value of
the limiting wave speed v+ given by (3.4b).

Taking into account (3.14) and (3.15) it is helpful to make the mapping w = b−v/2
which results in a significantly simplified form of (3.6):

k2
(
w′
)2

= (v − ∆)w2 + 4
3
w + 2(v − ∆)P − 1

2
v
(
v2 − v∆− 2

)
, (3.16)

which is valid only for limiting waves. As the crest of the limiting wave with the sharp
corner corresponds to w = 0, it is simple to find the value of the angle, which is just

tan
α

2
=

1

w′(0)
=

2k[
4(v − ∆)P − v (v2 − v∆− 2

)]1/2 . (3.17)

Unfortunately, the value of k itself depends on the values of P and v, and this
dependence is not very simple (see (3.19) below).

Equation (3.16) can be integrated directly to yield the limiting wave solution in the
closed form

F exp
(
k(v − ∆)1/2|θ|) = (v − ∆)1/2

(
w +

2

3(v − ∆)

)
+
(
(v − ∆)(w2 + 2P ) + 4

3
w + 1

2
v
(
v2 − v∆− 1

))1/2
, (3.18)

the constant F to be defined by the initial conditions. To find the value of the
wavevector which in this formulation is completely determined by the chosen values
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of P , v, ∆ one has to integrate over half a period. The result is

k =
1

π
(v − ∆)1/2 ln

(
2
√

2/3 + (v − ∆)1/2
[
v
(
v2 − v∆− 2

)− 4(v − ∆)P
]1/2[(

v2 − v∆− 4
3

) (
v2 − v∆− 2

3

)− 4(v − ∆)2P
]1/2

)
. (3.19)

An example of the limiting wave is presented in figure 2.

4. Evolution and breaking of a shoaling wave: mild bottom slope
Having established the basic features of the internal wave resonant interaction

with the shear current over a flat bottom, in this section we take into account the
presence of the bottom slope and consider the effect of the bottom variability on
the solutions of (1.1). The nature of the process and particular results depend on the
relation between the parameter ν, appearing in (2.8), and µ, i.e. on the scale of bottom
variability λ as compared with other spatial scales of the problem. The flat-bottom
problem is characterized, basically, by two horizontal scales: the wavelength, which is
unity in our scaling, and the spatial scale of the wave amplitude evolution Le, which
is of order µ−1L. If λ ∼ Le the phase mismatch depends on the same timescale as the
wave field components and the original system (1.1) with variable coefficients does
not seem to be treatable by analytical means. Some approximate solutions can be
found just in two limiting cases. If the bottom in the domain of resonance is ‘steep’,
so that λ� Le, one can approximate it by a step function and study the problem of
a wave passage over it, matching the solutions in two regions of the flat bottom by
means of some conservation laws derived from the original equations. In the opposite
limit, λ� Le and, thus, ν � µ, one can look for solutions in terms of adiabatic
perturbations, with the main-order term being locally a stationary wave over a flat
bottom, the parameters of which vary slowly in space and time. Then, a compatibility
condition ensuring regularity of the first-order correction results in a set of equations
governing the parameters evolution on slower space–time scales.

4.1. Averaged variational principle

Here we focus on the second problem as the most relevant for the description of
internal wave transformation and breaking in the shelf zone. The most convenient
way to study it is to apply Whitham’s method based on the Lagrangian formulation
of the original problem, which was developed originally for periodic wavetrains
(Whitham 1965) and successfully applied later to solitary waves as well (Grimshaw
1970; Pelinovsky 1996). Briefly, this procedure consists of calculating the average value
of the Lagrangian density over one period for the uniform wavetrain, which itself
depends on a set of parameters such as frequency, wavevector, mode amplitudes,
etc. The average Lagrangian is then subjected to variations with respect to these
parameters, which leads to the so-called transport equations. Equations (1.1) may be
considered as a consequence of a variational principle

δ

∫
L̂ dx dt = 0, (4.1a)

with the Lagrangian density L̂ expressed through the field potentials E, F so that

a = Ex, b = Fx, (4.1b)

L̂ = − 1
2

(ExEt + FxFt)− 1
3
F3
x − 1

2
∆E2

x + 1
2
E2
xx + ExFx. (4.1c)
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The main-order solutions to (1.1) are now sought in the most general form of a
periodic wavetrain on a pedestal, which depends only on the slow variables T = βt
and X = βx, β = Le/λ = ν/µ being the ratio of the nonlinear to the bottom-
variability space scales. These variables and the pedestals are treated as constants
when averaging over a wave period is carried out. Let

a =A+ e(θ), b = B+ u(θ), (4.2)

where θ = k(x − vt) is the wave phase and the periodic parts are supposed to have
zero mean over the period. The latter can be found in closed form by the same
procedure as applied in § 3, the only principal difference being the explicit appearance
of the pedestal B in the analogue of (3.6):

k2(u′)2 =
1

(v − 2B− u)2
((v−∆)

(
u2 − (v − 2B)u+ P

)2
+ 4

3
u3−(v−2B)u2−2Q), (4.3)

which implicitly determines the dependence of the wave solution on P ,Q and B.
Next the Lagrangian should be expressed in terms of the potentials taken in the

most general form

E = φ(x, t) + f(θ), (4.4a)

F = ψ(x, t) + g(θ), (4.4b)

where

{f, g} = k−1

∫ θ

0

{e, u}dθ (4.4c)

and φ = Ax − Ct, ψ = Bx − Dt are the so-called ‘pseudophases’, and then aver-
aged over the period taking into account (3.5). The result is the required averaged
Lagrangian

L =
[

1
2

(AC−BD− ∆A2
)

+AB− 1
3
B3 + Q

]
+ kW. (4.5)

It consists of the mean part in square brackets and the wave part kW. The former
depends only on pedestals, while the latter results from averaging over the wave
period of the function (3.13) which now takes the form

S = (v − ∆)
(
u2 − (v − 2B)u+ P

)2
+ 4

3
u3 − (v − 2B)u2 − 2Q, (4.6a)

W =
1

π

∮
|v − 2B− 2u|S1/2 du. (4.6b)

If the polynomial S(u) has the four real roots u0 < u1 < u2 < u3, we select that
solution of (3.13) for which u is confined between u1 and u2, given v − ∆ > 0, and
between u2 and u3 otherwise, so that the integral in (4.6b) is computed over half a
period of the wave.

The average Lagrangian L is a function of eight variables: A, B, C, D, P ,Q, ω
(= kv, the wave frequency) and k. For a slowly varying wavetrain these parameters
are functions of X,T and Whitham’s procedure is to subject the averaged Lagrangian
to variations with respect to constants of integration, ‘true’ phase θ and pseudophases
φ, ψ which together with three consistency relations

AT + CX = 0, (4.7a)

BT +DX = 0, (4.7b)

kT + (kv)X = 0 (4.7c)
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form a set of eight equations governing the dynamics of the wavetrain. These equations
describe slow space–time changes of its amplitude, celerity and period as well as of
the pedestals. Performing the necessary calculations we arrive at the set

δφ :

(
∂L
∂C
)
T

−
(
∂L
∂A

)
X

= 0, (4.8a)

δψ :

(
∂L
∂D
)
T

−
(
∂L
∂B
)
X

= 0, (4.8b)

δθ :

(
∂L
∂ω

)
T

−
(
∂L
∂k

)
X

= 0, (4.8c)

∂L
∂P

= 0,
∂L
∂Q

= 0. (4.8d, e)

This system can be simplified significantly by taking into account the explicit expres-
sions for the averaged Lagrangian and relations between the wave field components.
First, it is easy to see that (4.8d) results just in the identity 〈e〉 = 0, which is exactly
our a priori requirement for the wave to have zero mean. Furthermore, (4.8e) results
in a dispersion relation which determines the inverse wavenumber as a function of
other parameters:

k−1 = −∂W
∂Q

=
1

π

∮
|v − 2B− 2u|S−1/2du. (4.9)

Next, (4.8a), (4.8b) combined with the consistency relations for pseudophases yield
transport equations for the pedestals:

AT + ∆AX −BX = 0, (4.10a)

BT + 3BBX −AX =

(
k
∂W
∂B

)
X

, (4.10b)

which can be easily recognized as the result of substitution of wave field components
in the form (4.2) into the original set (1.1) and averaging over the period. Note that
the right-hand side of the second equation is just −〈u2〉X and thus this term describes
the generation of the mean or ‘rectified’ motion by the nonlinear wave field similar
to Reynolds stresses in turbulence theory and to the so-called ‘Miller force’ in plasma
hydrodynamics.

Finally, we note that W does not depend on ω and k separately but only on their
combination v = ω/k, and transform (4.8c) into the following form:(

∂W
∂v

)
T

+

(
v
∂W
∂v

)
X

=
∂W
∂X

, (4.11)

where the last derivative should be taken while keeping v = const. The physical
meaning of (4.11) can be easily understood if one computes the correspondent
derivatives of the function W and observes that

∂W
∂v

=
1

2

〈e2 + u2〉
k

. (4.12)

Thus (4.11) is just the conservation law for the averaged wave action, the reasons for
its variation being the bottom slope, the pedestals or the wavevector inhomogeneity
in space. The difference between (4.11) and the wave action conservation equation
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obtained within the framework of traditional theories (see e.g. Bretherton & Garrett
1968; Whitham 1974) is due to a specific dependence of the depth, and hence the phase
mismatch on the space–time variables. Traditionally the environment is supposed to
be stationary, but variable in space, whereas the coefficients of (1.1) do not depend on
the space variables, but change with time. Therefore, traditionally the wavevector and
the wave action E/ω are conserved, while the energy E and the wave frequency ω
change as separate variables. Within the framework of our model the wave frequency
and the wave action E/k are conserved, if the reflections from the bottom and the tail
generation process are neglected. It is worth noting that the conserved quantity E/k
acts as wave action in our specific variables only; if we turn back to the primitive
physical variables the quantity E/k is still conserved but it acquires a different physical
interpretation.

4.2. Solution of the transport equations

Finally we have obtained a system which consists of two transport equations for
pedestals (4.10), (4.11) for the wave action, the consistency relation for the real phase
and two integral constraints: requirement of the wave to have zero mean and the
dispersion relation (4.9). For periodic wavetrains wavevector k is of order unity and
the equations are strongly interdependent: nonlinear action of the wave field results
in pedestal generation which in turn greatly influences wave evolution. However, the
system can be considerably simplified if we confine ourselves to studying localized
solutions, i.e. solitary waves. Applying Whitham’s method, though based on averaging
over the period and usually applied to periodic wavetrains, to aperiodic solutions can
be successfully justified by the following argument.

Suppose that the constants of integration P ,Q tend to zero. The periodic nonlinear
wave then becomes asymptotically close to a periodic set of solitary waves. The
period, or the distance between the wave humps, as rigorous calculations indicate,
becomes asymptotically large in the limit P ,Q → 0, its dependence on the constants
being described approximately by the expression

2π

k
=
( v

v2 − v∆− 1

)1/2

ln

(
2Q+ P 2 v

2 − v∆− 1

v − ∆
)−1

+ O(ln lnP−1). (4.13)

One can easily recognize in the first multiplier the inverse value of κ−1 (see VPS (4.8))
which is just the typical spatial size of a solitary wave. If the period is so large that
its variations can be neglected, the difference between a set of solitary waves and an
isolated free solitary wave is asymptotically small. Then Whitham’s theory which is
valid for a set of solitary waves can also be used for a single solitary wave with an
asymptotically small error. Mathematically this means that we can use the derived
equations, putting P = Q = 0 in the calculations and introducing a formal averaging
over a solitary wave as follows:

〈( )〉 =
1

2π

∫ π

−π
( ) dθ → k

2π

∫ ∞
−∞

( ) dΘ → γ

(
v2 − v∆− 1

v

)1/2 ∫ ∞
−∞

( ) dΘ, (4.14)

where γ ∼ 1/ ln |Q|−1 is considered as a small constant parameter and thus can be
excluded from (4.11).

One important consequence is that the effect of a solitary wave on the mean
motion is asymptotically small (e.g. 〈u2〉 ∼ γ), i.e. the right-hand side of (4.10) can be
neglected. Then the evolution of pedestals and of solitary wave are decoupled and we
can confine ourselves to the study of the case A = B = 0 (if the pedestals were zero
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Figure 3. Transformation of shoaling solitary waves: (a) ‘fast’; (b) ‘slow’. Bold lines trace the
adiabatic evolution of the soliton amplitude bm, velocity v and spatial size κ−1 as functions of the
mismatch (depth) for different initial conditions. Dashed curves bound the regions of solitary wave
existence.

initially they would not be generated in the process of transformation). Thus the only
equation remaining to be solved is (4.11). The latter can be simplified even further,
as P ,B are now set to zero and the wave actionW depends just on the solitary wave
velocity v and an external parameter ∆ which is related with the depth variations
and is a function of time only. Hence, solitary wave variations in space can also be
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Figure 4. Dependence of the critical value of phase mismatch ∆br on the initial wave amplitude
bin: the initial value of ∆ is set to 1 in (a) and −1 in (b).

neglected and the solitary wave parameters are governed by the very simple equation

∂W
∂v

= const, (4.15)

which is just the law of conservation of action.
Unfortunately, even from this simplest form it is not possible to derive an explicit

analytical law connecting the wave amplitude and the local fluid depth similar to
the nonlinear Green’s law easily obtained in KdV type theories (Pelinovsky 1996).
However, it is straightforward to trace numerically the dependence of the wave
amplitude on varying ∆, where the latter is a known function of the depth. The results
of such calculations for ‘fast’ and ‘slow’ solitary waves are shown in figure 3(a, b) as
a family of solid curves in the (v, ∆)-, (um, ∆)-planes at which (4.15) is fulfilled. The
dashed curves on the velocity graphs bound the regions of solitary wave existence for
the local value of the phase mismatch corresponding to the borders of the regions of
solitary waves existence as found by VPS (see their figure 4, (4.7) and the discussion
below). The evolution of solitary waves belonging to different families are completely
different: the speed of the ‘slow’ ones tends to the limiting value c− and their amplitude
decreases as the depth diminishes; the amplitude of the ‘fast’ ones grows very rapidly
and their speed becomes close to the local speed of the limiting wave v+.

To find the dependence of the critical value of the phase mismatch ∆ and, hence,
of the fluid depth on the initial solitary wave amplitude, numerical calculations were
performed in which all solitary waves started from the same initial value of ∆, but
had different initial amplitudes. As one could expect the larger the wave, the earlier it
reaches the local limiting value of velocity and breaks. The outcome of the calculations
was the value ∆br at which this event occurs. Results for two different initial values
of phase mismatch are depicted in figure 4.

Although the calculations cannot be continued and the wave evolution traced
beyond the dashed lines in figure 3, the physical picture of wave onshore propagation
is clear:

the ‘slow’ waves vanish as their amplitude decreases while the spatial size κ−1

tends to infinity as v → c−;
the ‘fast’ solitary waves become locally close to the limiting form with a sharp

corner at the crest at a certain depth specified by the initial conditions. Further
adiabatic evolution is impossible and the waves have no other option but to break.

Note that the effect of inevitable wave breaking in the process of shoaling results
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entirely from the resonant interaction of internal waves with the current and has
no analogue in the traditional KdV-type theories (see e.g. Grimshaw 1970, 1997;
Maslowe & Redekopp 1980), where, as a rule, wave breaking is associated with
strong nonlinearity. A peculiar feature of the model derived here is that within the
framework of a weakly nonlinear approach it proves to be possible to establish the
fact of wave breaking and to specify its conditions.

The range of validity of the employed adiabatic approximation merits a very brief
discussion, since this issue was thoroughly studied within the framework of traditional
KdV-type models. The bottom slope should be sufficiently mild, so that the wave
reflection from the bottom is weak enough to be neglected. Though generation of an
oscillatory or aperiodic tail by a shoaling solitary wave does occur and might itself
be considered as an important non-adiabatic effect (Johnson 1973; Grimshaw 1979),
its influence on the primary wave is negligible to the main order of approximation.

5. Evolution and breaking of shoaling wave: arbitrary bottom slope
Unlike the solitary waves, the periodic ones, in general, have the wavevector k of the

order of unity, and therefore the equations (4.9)–(4.11) are strongly interdependent.
This means that though non-adiabatic effects due to reflection from the bottom can
be neglected for a wave propagating over a gently sloping bottom, the tail or pedestal
generated by periodic wave cannot. The effect of the right-hand side of (4.10b) is
significant and the equations governing the pedestals dynamics do not split from the
ones governing the wave part of the solution. The varying pedestal B(X,T ), in its
turn, affects the wave action and the right-hand side of (4.11) is not negligible, i.e. the
wave action is not conserved even in the adiabatic case. Therefore, one has to integrate
a system of non-linear PDEs, with the functions to study being related by the integral
constraints. The difficulties of obtaining any meaningful results analytically seem to be
unsurmountable and the most rational way to proceed is through numerics. However,
since the transport equations have already been obtained under certain somewhat
restrictive approximations, direct numerical simulation of the initial problem within
the framework of the original set (1.1) is a more preferable option. Thus we choose
to integrate the system (1.1) directly, which, in particular, enables us to study the
non-adiabatic regimes of evolution, i.e. when the scale of the bottom variability is
comparable with the scale of nonlinear evolution (ν ∼ 1).

The space–time evolution of the periodic initial perturbations was studied with
the help of a numeric scheme based on the pseudo-spectral method with respect to
spatial variables and the Runge–Kutta method with controlled time-step with respect
to the temporal one. The accuracy of the scheme was tested initially for constant ∆
by using an exact periodic solution of (3.6) as the initial condition and checking the
conservation of two integrals of motion, derived by VPS:

P =

∮ (
a2 + b2

)
dθ, (5.1a)

H =

∮ (
a2
x − ∆a2 + 2ab− 2

3
b3
)

dθ, (5.1b)

in the course of the wave propagation. The first invariant has to be conserved for the
case of variable ∆ as well and was used to check the validity of the calculations.

The series of simulations was performed for both adiabatically and non-adiabatically
sloping depth. In both cases the exact dependence of ∆ on the time was taken to be
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Figure 5. Wave evolution up to breaking in the adiabatic case.

a linear function in order to model the most common conditions in the coastal zone.
However, as many trial runs revealed, the outcome does not depend noticeably on
the functional form of the depth dependence on time as long as its scale is less or
comparable to that of nonlinear evolution.

The observed scenarios of wave evolution prove to be very similar and to illustrate
the typical adiabatic and non-adiabatic ones we confine ourselves to just two examples.
In the first case the function ∆ = 8− 0.05t was used to model the adiabatic evolution
of the wave perturbations; in the second the function ∆ = 8 − t was used. The
initial conditions were sinusoidal waves of unitary wavelength and different initial
amplitudes, and vorticity and internal wave amplitudes were presumed to be related by
(3.2b) with ∆ = 8. The results of simulations corroborated the qualitative conclusions
gained from the adiabatic approach: all waves studied with the initial amplitudes in
the range 0.0025 6 b 6 1 did break within the resonance zone, i.e. at ∆ > −10, both
in the adiabatic and non-adiabatic case. The principal difference was the nature of the
breaking process: in the adiabatic case the waves remained symmetric with respect to
the crest up to the formation of the sharp corner at the crest, in full accordance with
the expectations. On the other hand, in non-adiabatic case the wave form was more
and more distorted as it approached the breaking point, namely the front became
much steeper than the rear. Two illustrative examples of the successive change of the
wave form for these two cases are shown in figures 5 and 6. In both cases the initial
amplitude of the waves was taken to be bin = 0.01. In agreement with the theory
developed the form of the internal wave perturbation a(x, t) remained smooth up to
the moment of breaking.

6. The effect of turbulent viscosity
The starting point of our analysis was the ideal fluid equations (2.1). The particular

reason for the neglect of viscous effects is that they are commonly believed to be
negligible for motions of the scales under consideration. Yet the specific feature of
the motions we describe is the importance for their dynamics of the subsurface layer,
where due to wind-wave breaking the turbulence intensity is strongly enhanced and
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therefore the values of the viscosity might far exceed those in the main body of the
fluid. Thus the question regarding the effect of the turbulence in the subsurface layer
on the internal wave–shear flow resonance, raised by a referee, indeed merits a special
consideration.

In this section to take the effect of turbulent viscosity into account we start with
the full Navier–Stokes equations, i.e. for the horizontal momentum transfer we use
(the variables are dimensional)

u′t + (u′ · ∇)u′ +
p′x
ρ′0

= ∇ · (ν ′∇u′) , (6.1)

where ν ′(z′) is the turbulent viscosity of the water. Using some suitable value ν0 as
the viscosity scale and employing (2.2) we obtain

ut + (u · ∇)u+
px

ρ0

= η (νuz)z , (6.2)

with the horizontal viscous term neglected due to the long-wave approximation
adopted. Even if ν ′(z′) were of the same order near the surface and in the bulk of the
fluid, the coefficient η in the subsurface layer is much greater than in the bulk of the
fluid due to the different vertical scales involved, i.e.

η =


ηs =

ν0L

Vh2
in the subsurface layer,

ηb =
ν0L

VH2
at depth.

(6.3)

Provided the turbulent viscosity is not extremely large, its effect on travelling waves
can be taken into account within the framework of the asymptotic approach we
have already employed. Namely, suppose that ηs is of order µ. Then ηb � O(µ5),
the viscous effects can be safely neglected in the core of the fluid and (2.12) remains
intact. In the boundary layer the main-order solution is described by (2.16) again, but
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an additional term arises in (2.17):

Bτ −Uζ

∣∣∣
ζ=0
BBχ − U2

Uζ

∣∣∣∣
ζ=0

f(0)
z Aχ −

(
νUζζ

)
ζ

Uζ

∣∣∣∣∣
ζ=0

B = 0. (6.4)

Note that, depending on the particular geometry of the flow, the last term describes
damping or amplification of the wave. So far we are not aware of any situations
corresponding to wave amplification, although we do not rule out their existence.

By using the scaling transformation (2.18) again we finally obtain a new set of
equations instead of (1.1):

at + ∆ax − axxx − bx = 0, (6.5a)

bt + 2bbx − ax + γb = 0, (6.5b)

where

γ = − (νUζζ

)
ζ

 αβ2

Uζ

(
Uf

(0)
z

)6


1/4

. (6.5c)

The extra term which appears in (6.5b) corresponds to the so-called Rayleigh type
of damping/pumping, very common in the studies of long-wave dynamics. This is
not surprising, as the vertical structure of the Fourier harmonics comprising the
long wave is nearly identical and thus the effect of the differential, Navier–Stokes
type, friction is the same for all of them. The effect of the Rayleigh friction on the
wave is completely different from that of Navier–Stokes friction. Whereas the latter
does inhibit higher harmonics, effectively smooths the wave form and, thus, prevents
breaking and overturning, the former is only able to provide a certain threshold value
for the initial amplitudes, i.e. one would expect the waves of the initial amplitude
below the threshold to be dissipated by the friction, but the supercritical ones to
develop a sharp corner at the crest and break in spite of the dissipation.

To check this conjecture numerical simulations of (6.5) were performed for different
values of the coefficient γ and the initial wave amplitude. The depth dependence in all
runs was taken in the form ∆ = 4 − 0.1t, which corresponds to a quite mild bottom
slope. The results are presented in the figure 7, showing the dependence of the critical
initial amplitude of the stationary wave at the depth corresponding to ∆ = 4 on the
dissipation strength. All waves with amplitudes exceeding the critical one were found
to develop a singularity at the crest and eventually break. The results indicate that
the viscosity in the subsurface layer has already to be taken into account at values of
γ of order of 0.1.

To make a very rough estimate of the viscosity scale corresponding to this value we
choose the simplest case of exponential stratification and set the eddy diffusivity to
be constant in the boundary layer, i.e. we assume N = const, ν = const. The estimates
based on (6.5c) and the equality ηs = µ then are identical and yield

ν0 = 0.1
πVh2

L

(
h

H

)1/2
∣∣∣∣∣
(
Uζ

)1/4

Uζζζ

∣∣∣∣∣
z=0

. (6.6)

We use for quantitative estimates the values of H0, V , N0 discussed below in § 7,
assuming also h = 10 m, while (2.6) yields an estimate for the wavelength L = 1700 m.
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Figure 7. Dependence of the critical initial amplitude bin on the dissipation strength γ (solid line).
The straight dashed line is given for reference.

The threshold value of the eddy diffusivity then is

ν0 ≈
∣∣∣∣∣
(
Uζ

)1/4

Uζζζ

∣∣∣∣∣
z=0

× 5 cm2 s−1.

The main difficulty lies in the fact that not only are the values of the eddy diffusivity
beneath the breaking wind waves not well known (for the state of the art knowledge
see Terray et al. 1996), but also the shear flow geometry near the surface is particularly
poorly known. Any judgement on the effect of the viscosity thus strongly depends on
a poorly known parameter: the third derivative of the velocity at the surface Uζζζ(0).
Since the nature of the subsurface boundary layer has not been established yet any
quantitative estimates would be premature.

7. Concluding remarks
The main conclusion of our analysis is that shoaling internal waves of any small

initial amplitude cause breaking in the subsurface layer when passing through the
resonance zone. It might be helpful to discuss briefly first the circumstances when
these resonance conditions are met and then some immediate implications of the
results.

Consider a common situation in which a weak to moderate wind with a speed of,
say 5–10 m s−1, blows onshore. The wind generates a shear current with velocity at
the water surface U0 of about 3% of the wind speed, i.e around 0.15–0.3 m s−1. The
phase velocity of long internal waves c0 strongly depends on both the type and the
strength of stratification, which vary widely from place to place and from season to
season. However, the simplest rough estimate

c0 ≈ N0H

πn
, (7.1)

where N0 is a somehow depth-averaged Brunt–Väisälä frequency, H is the character-
istic total depth and n is the vertical mode number, seems to suffice for our purposes.
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Setting the current velocity scale to be ≈ 0.2 m s−1 and the Brunt–Väisälä frequency
N0 to, say, 10−3 s−1, respectively, the resonance condition c0 = U0 selects the depth
about 600 m for the main mode. For bottom slopes O(10−2) or smaller the character-
istic width of the resonance zone is 10 km or larger. Moreover, there is a sequence of
such zones corresponding to the resonances with the first few higher vertical modes
of internal waves, since the higher modes reach resonance at roughly n-times larger
depths. For situations characterized by very sharp pychnoclynes, such higher-mode
zones might be absent, since the level of higher modes is quite low, while for the main
mode (7.1) underestimates the phase velocity c0 and thus the first resonance zone can
be shifted somewhat closer to the shore.

To quantify the contribution to mixing of the mechanism considered one should,
apart from specifying the statistics of the incoming internal wave field, details of
stratification and shear profiles, investigate in more detail the breaking itself, which
goes beyond the scope of the present study. However, it is worth mentioning that
in our view in contrast to the studies of gravity internal wave breaking (see e.g.
Michallet & Ivey 1999), the main role of the breaking events in the subsurface layer
we studied is in triggering more intense breaking of wind waves. Indeed, a breaking
event in the subsurface layer should result in its local widening and a drop of current
velocity at the surface. The wind waves, being extremely sensitive to even the smallest
non-uniformity of the shear current, increase locally their intensity of breaking and
thus further enhance the local anomaly of the shear current. The manifestations of
such a scenario are expected to be observable even by an unaided eye as wide streaks
of more intense wind-wave breaking parallel to the shoreline. The streaks can be also
detected from satellites both in the visual range as lines of higher albedo, and in the
microwave and infrared ranges as a sea surface anomaly. Direct in situ experimental
verification of the suggested picture by existing technical means is hardly feasible in
the foreseeable future because of the necessity to carry out high accuracy current
measurements in the subsurface layer in the presence of quite intense wind waves.
At present the only ways open are accumulation of indirect evidence and developing
new remote sensing techniques able to discern these processes. A realistic much more
feasible first step would be direct experimental testing of the described scenarios in
laboratory conditions; we see no serious obstacles to this.

It is worth mentioning that although our prime motivation in this work was to
investigate the dynamics of the uppermost ocean layer, the derived model is equally
applicable for describing the resonance between internal waves and the bottom
boundary layer current. The processess resulting in enhancing of mixing in the
vicinity of the bottom are of special interest in the context of sediment transport.
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